Chebyshev approximation with sums of logarithmic functions
نویسندگان
چکیده
منابع مشابه
Approximation of Analytic Functions by Chebyshev Functions
and Applied Analysis 3 where we refer to 1.4 for the am’s and we follow the convention ∏m−1 j m · · · 1. We can easily check that cm’s satisfy the following relation: m 2 m 1 cm 2 − ( m2 − n2 ) cm am 2.2 for any m ∈ {0, 1, 2, . . .}. Theorem 2.1. Assume that n is a positive integer and the radius of convergence of the power series ∑∞ m 0 amx m is ρ > 0. Let ρ0 min{1, ρ}. Then, every solution y ...
متن کاملThe Asymptotic Chebyshev Coefficients ior Functions with Logarithmic Enclpoint Singularities: Mappings ad Singular Basis Functions
When a function is singular at the ends of its expansion interval, its Chebyshev coefficients a, converge very poorly. We analyze three numerical strategies for coping with such singularities of the form (1 + x)~ log(1 f x), and in the process make some modest additions to the theory of Chebyshev expansions. The first two numerical methods are the convergence-improving changes of coordinate x =...
متن کاملOn Approximation of Functions by Exponential Sums
We introduce a new approach, and associated algorithms, for the efficient approximation of functions and sequences by short linear combinations of exponential functions with complex-valued exponents and coefficients. These approximations are obtained for a finite but arbitrary accuracy and typically have significantly fewer terms than Fourier representations. We present several examples of thes...
متن کاملRigorous uniform approximation of D-finite functions using Chebyshev expansions
A wide range of numerical methods exists for computing polynomial approximations of solutions of ordinary differential equations based on Chebyshev series expansions or Chebyshev interpolation polynomials. We consider the application of such methods in the context of rigorous computing (where we need guarantees on the accuracy of the result), and from the complexity point of view. It is well-kn...
متن کاملCHEBYSHEV RATIONAL APPROXIMATION TO ENTIRE FUNCTIONS IN [ 0 , oc ]
Introduction : Quite recently Chebyshev rational approximation to certain entire functions on the whole positive axis has attracted the attention of many mathematicians. In this respect the papers ([3-7, 9]) are worth mentioning. All these papers have been devoted only to entire functions of finite order. On the other hand, methods developed and used in these papers are valid only to entire fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1979
ISSN: 0021-9045
DOI: 10.1016/0021-9045(79)90049-2